

Data Science With Python

The Best Training Institute in Hyderabad

Datascience with Python

Lesson 1

Course Introduction:

- 1.1 Course Introduction
- 1.2 Demo Jupyter Lab Walk Through

Lesson 2

Introduction to Data Science:

- 2.1 Learning Objectives
- 2.2 Data Science Methodology
- 2.3 From Business Understanding to Analytic Approach
- 2.4 From Requirements to Collection
- 2.5 From Understanding to Preparation
- 2.6 From Modeling to Evaluation
- 2.7 From Deployment to Feedback
- 2.8 Key Takeaways

Lesson 3

Python Libraries For Data Science:

- 3.1 Learning Objectives
- 3.2 Python Libraries for Data Science
- 3.3 Import Library into Python Program
- 3.4 Numpy
- 3.5 Demo Numpy
- 3.6 Fundamentals of Numpy
- 3.7 Numpy Array Shapes and axes Part A
- 3.8 Numpy Array Shapes and axes Part
- 3.9 Arithmetic Operations
- 3.10 Conditional Statements in Python
- 3.11 Common Mathematical and Statistical Functions in NumPy
- 3.12 Indexing and Slicing in Python Part A
- 3.13 Indexing and Slicing in Python Part B
- 3.14 Introduction to Pandas
- 3.15 Introduction to Pandas Series
- 3.16 Querying a Series
- 3.17 Pandas Dataframe

- 3.18 Introduction to Pandas Panel
- 3.19 Common Functions in Pandas
- 3.20 Statistical Functions in Pandas
- 3.21 Date and Timedelta
- **3.22 IO Tools**
- 3.23 Categorical Data
- 3.24 Working with Text Data
- 3.25 Iteration
- 3.26 Plotting with Pandas
- 3.27 Matplotlib
- 3.28 Demo Matplotlib
- 3.29 Data Visualization Libraries in Python Matplotlib
- 3.30 Graph Types
- 3.31 Using Matplotlib to Plot Graphs
- 3.32 Matplotlib for 3d Visualization
- 3.33 Using Matplotlib with Other Python Packages
- 3.34 Data Visualization Libraries in Python Seaborn An Introduction
- 3.35 Seaborn Visualization Features
- 3.36 Using Seaborn to Plot Graphs

- 3.37 Analysis using seaborn plots
- 3.38 Plotting 3D Graphs for Multiple Columns using Seaborn
- 3.39 SciPy
- 3.40 Demo Scipy
- 3.41 Scikit-learn
- 3.42 Scikit Models
- 3.43 Scikit Datasets
- 3.44 Preprocessing Data in Scikit Learn Part 1
- 3.45 Preprocessing Data in Scikit Learn Part 2
- 3.46 Preprocessing Data in Scikit Learn Part 3
- 3.47 Demo Scikit learn
- 3.48 Key Takeaways

Lesson 4

Statistics:

- 4.1 Learning Objectives
- 4.2 Introduction to Linear Algebra
- 4.3 Scalars and vectors
- 4.4 Dot product of Two Vectors
- 4.5 Linear Independence of Vectors
- 4.6 Norm of a Vector
- 4.7 Matrix
- 4.8 Matrix Operations
- 4.9 Transpose of a Matrix4.10 Rank of a Matrix
- 4.11 Determinant of a matrix and Identity matrix or operator
- 4.12 Inverse of a matrix and Eigenvalues and Eigenvectors
- 4.13 Calculus in Linear Algebra
- 4.14 Importance of Statistics for Data Scienc
- 4.15 Common Statistical Terms
- 4.16 Types of Statistics
- 4.17 Data Categorization and types of data
- 4.18 Levels of Measurement

- 4.19 Measures of central tendency mean
- 4.20 Measures of Central Tendency Median
- 4.21 Measures of Central Tendency Mode
- 4.22 Measures of Dispersion
- 4.23 Variance
- 4.24 Random Variables
- 4.25 Sets
- 4.26 Measure of Shape Skewness
- 4.27 Measure of Shape Kurtosis
- 4.28 Covariance and corelation
- 4.29 Basic Statistics with Python Problem Statement
- 4.30 Basic Statistics with Python Solution
- 4.31 Probability its Importance and Probability Distribution
- 4.32 Probability Distribution Binomial Distribution
- 4.33 Binomial Distribution using Python
- 4.34 Probability Distribution Poisson Distribution
- 4.35 Poisson Distribution Using Python
- 4.36 Probability Distribution Normal Distribution

- 4.37 Probability Distribution Uniform Distribution
- 4.38 Probability Distribution Bernoulli Distribution
- 4.39 Probability Density Function and Mass Function
- 4.40 Cumulative Distribution Function
- 4.41 Central Limit Theorem
- 4.42 Bayes Theorem
- 4.43 Estimation Theory
- 4.44 Point Estimate using Python
- 4.45 Distribution
- 4.46 Kurtosis Skewness and Student's T- distribution
- 4.47 Hypothesis Testing and mechanism
- 4.48 Hypothesis Testing Outcomes Type I and II Error
- 4.49 Null Hypothesis and Alternate Hypothesis
- 4.50 Confidence Intervals
- 4.51 Margin of Errors
- 4.52 Confidence Levels
- 4.53 T test and P values Using Python4.54 Z test and P values Using Python
- 4.55 Comparing and Contrastin T test and Z-tests
- 4.56 Chi Squared Distribution

- 4.57 Chi Squared Distribution using Python
- 4.58 Chi squared Test and Goodness of Fit
- **4.59 ANOVA**
- 4.60 ANOVA Terminologies
- 4.61 Assumptions and Types of ANOVA
- 4.62 Partition of Variance
- 4.63 F-distribution
- 4.64 F Distribution using Python
- 4.65 F-Test
- 4.66 Advanced Statistics with Python Problem Statement
- 4.67 Advanced Statistics with Python Solution
- 4.68 Key Takeaways

Lesson 5

Data Wrangling:

- **5.1 Learning Objectives**
- 5.2 Data Exploration Loading Files Part A
- 5.3 Data Exploration Loading Files Part B
- 5.4 Data Exploration Techniques Part A
- 5.5 Data Exploration Techniques Part B
- 5.6 Seaborn
- 5.7 Demo Correlation Analysis
- 5.8 Data Wrangling
- 5.9 Missing Values in a Dataset
- 5.10 Outlier Values in a Dataset
- 5.11 Demo Outlier and Missing Value Treatment
- 5.12 Data Manipulation
- 5.13 Functionalities of Data Object in Python Part A
- 5.14 Functionalities of Data Object in Python Part B
- 5.15 Different Types of Joins
- 5.16 Key Takeaway

Lesson 6

Feature Engineering:

- **6.1 Learning Objectives**
- **6.2 Introduction to Feature Engineering**
- 6.3 Encoding of Catogorical Variables
- 6.4 Label Encoding
- 6.5 Techniques used for Encoding variables
- 6.6 Key Takeaways

Lesson 7

Exploratory Data Analysis:

- 7.1 Learning Objectives
- 7.2 Types of Plots
- 7.3 Plots and Subplots
- 7.4 Assignment 01 Pairplot Demo
- 7.5 Assignment 02 Pie Chart Demo
- 7.6 Key Takeaways

Lesson 8

Feature Selection:

- 8.1 Learning Objectives
- 8.2 Feature Selection
- 8.3 Regression
- 8.4 Factor Analysis
- 8.5 Factor Analysis Process
- 8.6 Key Takeaways

Machine Learning

Lesson 1

Course Introduction:

- 1.1 Course Introduction
- 1.2 Demo Jupyter Lab Walk Through

Lesson 2

Introduction to Machine Learning:

- 2.1 Learning Objectives
- 2.2 Relationship between Artificial Intelligence, Machine Learning, and Data Science: Part A
- 2.3 Relationship between Artificial Intelligence, Machine Learning, and Data Science: Part B
- 2.4 Definition and Features of Machine Learning
- 2.5 Machine Learning Approaches
- 2.6 Key Takeaways

Lesson 3

Supervised Learning Regression and Classification:

- 3.1 Learning Objectives
- 3.2 Supervised Learning
- 3.3 Supervised Learning: Real Life Scenario
- 3.4 Understanding the Algorithm
- 3.5 Supervised Learning Flow
- 3.6 Types of Supervised Learning: Part A
- 3.7 Types of Supervised Learning: Part B
- 3.8 Types of Classification Algorithms
- 3.9 Types of Regression Algorithms: Part A
- 3.10 Regression Use Case
- 3.11 Accuracy Metrics
- 3.12 Cost Function
- 3.13 Evaluating Coefficients
- 3.14 Demo: Linear Regression
- 3.15 Challenges in Prediction
- 3.16 Types of Regression Algorithms: Part B
- 3.17 Demo: Bigmart

- 3.18 Logistic Regression: Part A
- 3.19 Logistic Regression: Part B3.20 Sigmoid Probability
- 3.21 Accuracy Matrix
- 3.22 Demo: Survival of Titanic Passengers
- 3.23 Overview of Classification
- 3.24 Classification: A Supervised Learning Algorithm
- 3.25 Use Cases
- 3.26 Classification Algorithms
- 3.27 Performance Measures: Confusion Matrix
- 3.28 Performance Measures: Cost Matrix
- 3.29 Naive Bayes Classifier
- 3.30 Steps to Calculate Posterior Probability: Part A
- 3.31 Steps to Calculate Posterior Probability: Part B
- 3.32 Support Vector Machines: Linear Separability
- 3.33 Support Vector Machines: Classification Margin
- 3.34 Linear SVM: Mathematical Representation
- 3.35 Non linear SVMs
- 3.36 The Kernel Trick
- 3.37 Demo: Voice Classification
- 3.38 Key Takeaways

Lesson 4

Decision Trees and Random Forest:

4.1 Learning Objectives

4.2 Decision Tree: Classifier

4.3 Decision Tree: Examples

4.4 Decision Tree: Formation

4.5 Choosing the Classifier

4.6 Overfitting of Decision Trees

4.7 Random Forest Classifier Bagging and Bootstrapping

4.8 Decision Tree and Random Forest Classifier

4.9 Demo: Horse Survival

4.10 Key Takeaways

Lesson 5

Unsupervised Learning:

- **5.1 Learning Objectives**
- 5.2 Overview
- 5.3 Example and Applications of Unsupervised Learning
- 5.4 Clustering5.5 Hierarchical Clustering
- 5.6 Hierarchical Clustering: Example
- 5.7 Demo: Clustering Animals
- 5.8 K-means Clustering
- **5.9 Optimal Number of Clusters**
- 5.10 Demo: Cluster Based Incentivization
- 5.11 Key Takeaways

Lesson 6

Time Series Modelling:

- **6.1 Learning Objectives**
- 6.2 Overview of Time Series Modeling
- 6.3 Time Series Pattern Types: Part A
- 6.4 Time Series Pattern Types: Part B
- 6.5 White Noise
- 6.6 Stationarity
- 6.7 Removal of Non Stationarity
- 6.8 Demo: Air Passengers I
- 6.9 Time Series Models: Part A
- 6.10 Time Series Models: Part B
- 6.11 Time Series Models: Part C
- 6.12 Steps in Time Series Forecasting
- 6.13 Demo: Air Passengers II
- 6.14 Key Takeaways

Lesson 7

Ensemble Learning:

- 7.1 Learning Objectives
- 7.2 Overview
- 7.3 Ensemble Learning Methods: Part A
- 7.4 Ensemble Learning Methods: Part B
- 7.5 Working of AdaBoost
- 7.6 AdaBoost Algorithm and Flowchart
- 7.7 Gradient Boosting
- 7.8 XGBoost
- 7.9 XGBoost Parameters: Part A
- 7.10 XGBoost Parameters: Part B
- 7.11 Demo: Pima Indians Diabetes
- 7.12 Model Selection 7.13 Common Splitting Strategies
- 7.14 Demo: Cross Validation
- 7.15 Key Takeaways

Lesson 8

Recommender Systems:

- 8.1 Learning Objectives
- 8.2 Introduction
- 8.3 Purposes of Recommender Systems
- 8.4 Paradigms of Recommender Systems
- 8.5 Collaborative Filtering: Part A
- 8.6 Collaborative Filtering: Part B
- 8.7 Association Rule: Mining
- 8.8 Association Rule: Mining Market Basket Analysis
- 8.9 Association Rule: Generation Apriori Algorithm
- 8.10 Apriori Algorithm Example: Part A
- 8.11 Apriori Algorithm Example: Part B
- 8.12 Apriori Algorithm: Rule Selection
- 8.13 Demo: User Movie Recommendation Model
- 8.14 Key Takeaways

